Dr. Eren expects that the new equipment will help in understanding a wide range of materials including metals, semiconductors, and oxides, as well as other phenomena such as corrosion, and electro- and photochemistry. In his first set of studies, Dr. Eren hopes to gain an understanding of the atomic and chemical structure of the copper-based catalysts used in the ‘methanol economy’ that could lead to a cleaner and greener future energy solution, compared to the prevalent ‘oil economy’. Weizmann is known for supporting young scientists who wish to pursue independent research, and Dr. Eren is doing this, deviating if and when needed from mainstream trends.
Lab research areas
The laboratory focuses on understanding the atomic, chemical, and electronic structure of solid surfaces that are relevant to industrially and environmentally important fields like heterogeneous catalysis, electrochemistry, corrosion, and lubrication. Unlike classical surface science, the laboratory performs surface-sensitive spectroscopy and atomically resolved microscopy measurements in the presence of reactant gases or liquids, while avoiding significant sacrifices in terms of measurement resolution and accuracy.
Scholar Profile
At Weizmann, Dr. Eren is a member of the Chemical and Biological Physics Department, researching solid/gas and solid/liquid interfaces at the molecular and atomic levels, using a combination of advanced spectroscopy and microscopy. While focusing on basic research, his research along with the state-of-the-art equipment that he plans to develop, have practical implications for heterogeneous catalysis in chemical production and energy conversion processes. Heterogeneous catalysis is critical to the synthesis and purification of chemicals at an industrial scale, and mitigates the impact of harmful pollutants on health and the environment by converting them to more inert products.