Yoav Shechtman
Abstract:
Single-molecule localization microscopy achieves nanometer spatial resolution by localizing single fluorophores separated in space and time. A major challenge of single-molecule localization microscopy is the long acquisition time, leading to low throughput, as well as to a poor temporal resolution that limits its use to visualize the dynamics of cellular structures in live cells. Another challenge is photobleaching, which reduces information density over time and limits throughput and the available observation time in live-cell applications. To address both challenges, we combine two concepts: first, we integrate the neural network DeepSTORM to predict super-resolution images from high-density imaging data, which increases acquisition speed. Second, we employ a direct protein label, HaloTag7, in combination with exchangeable ligands (xHTLs), for fluorescence labeling.